
������������������		

������������

��������������������

�

�

RReeffaaccttoorriinngg:: RR
QQ

Research Scholar, Department of Computer Science, Singhania University, Rajasthan.
Asst. Professor, Department of Computer

Abstract: Refactorings are used to
external behavior. Designed poorly
has been applied to improve the quality
applied to improve the software quality after
user of software always require quality software
effects on software quality attribute
researchers to prepare superior research t
Keywords: Refactoring, risks, improve,

1. Introduction
 Software refactoring was cast by William F. Opdyke in his Ph.D.
book which is written by Martin Flower
used. Refactoring preserves all of system
believed that refactoring improves
refactoring is to modify a program structure into a
modifications decrease the cost and effort of software
software difficulties within reasonable
difficulties and software refactoring
improve the quality of the software.
method signature are ways of refactoring.
The word smell in the software program
methods are applied when the smell is found
any programming language refactoring can be applied
been developed for the Java language.
use the number of refactoring grow
found that a high part of refactoring edits is often followed by an increasing ratio of
Refactoring is used to those programs which are not
follow: Section 2: explains the related work of various researchers on software refactoring.
Refactoring risk. Section 4: describe
oriented design and software measure.

2. Related Work

The purpose of this paper is to find the risk
study the review of various researchers
on the maintainability. He used coupling metrics to measure the maintainability
estimation method. Mohammed Alshayeb
external attribute. The quality attribut
relationship of refactoring method and external quality attribute
Karim O. Elish [8] proposed a classification of refa

����������������������������		��

������������������������� ��������� ������

�! �"���������	#���$%& ������	��� ���

RRiisskkss aanndd iittss EEffffeeccttss oonn SSoo
QQuuaalliittyy AAttttrriibbuuttee

Ramesh Kumar, Dr.Rajesh Verma
Research Scholar, Department of Computer Science, Singhania University, Rajasthan.

Asst. Professor, Department of Computer Science, Govt. College, Indri, Karnal

Refactorings are used to improve the internal structure of software without changing its
poorly software systems are difficult to understand. Refactoring technique

quality of software and productivity of developer. Refactoring is mainly
to improve the software quality after some features are added. Software development team and

always require quality software. This paper presents a study of refactoring risk
attribute. The extracted information from this paper should help the
research topic and can save the researchers effort and time.
, improve, software quality, attribute, productivity.

by William F. Opdyke in his Ph.D. dissertation [1], after the publication
ch is written by Martin Flower Refactoring: improve the design of existing c

all of system actual functionality to modifying the structure of a program
believed that refactoring improves developer productivity and software quality [2]

a program structure into a good quality after fixing quality fault
the cost and effort of software maintainability for the long time

reasonable levels. In the past researcher favor several techniques to solve the
and software refactoring is which one. In the context of software evolution it is used to

improve the quality of the software. Extracting some code into a method, renaming a class, changing the
method signature are ways of refactoring.

software program means prospective problem in the program
when the smell is found. It continues till we find the maximum effective

refactoring can be applied, but the maximum of refactoring current tools have
the Java language. Ratzinger et at. found that, the number of faults

grow increases in the time period of preceding [5]. Diehl and
of refactoring edits is often followed by an increasing ratio of fault
those programs which are not coded poorly. In this paper we study in section

the related work of various researchers on software refactoring.
: describes the methods of refactoring. Section 5: Quality model for object

oriented design and software measure. Section 6: analyses of refactoring 7: Conclusion.

paper is to find the risks of refactoring and its effects on software
researchers on software refactoring. Katoka assesses the effect of refactoring

e used coupling metrics to measure the maintainability. He prefers
Alshayeb assesses the effect of refactoring on the software quality

ality attribute taken were Maintainability, Reusability, Understandability.
refactoring method and external quality attribute author found the inconsistent trend

a classification of refactoring methods based on their measurable

��� ��������� ������' ' ' ��()��
���((������

���*�+��,����

ooffttwwaarree

Research Scholar, Department of Computer Science, Singhania University, Rajasthan.

of software without changing its

tems are difficult to understand. Refactoring technique
Refactoring is mainly

Software development team and
refactoring risks and its

The extracted information from this paper should help the
ave the researchers effort and time.

], after the publication of
Refactoring: improve the design of existing code, it is mostly

to modifying the structure of a program. It is
]. The purpose of

fault [3]. Such types of
maintainability for the long time by keeping

several techniques to solve the
e context of software evolution it is used to

Extracting some code into a method, renaming a class, changing the

program code. Refactoring
ll we find the maximum effective code [4]. In

of refactoring current tools have
the number of faults decreases, if we

Diehl and WeiBgerber
fault reports [6, 7].

In this paper we study in section as
the related work of various researchers on software refactoring. Section 3.

Section 5: Quality model for object
Conclusion.

on software quality. Now we
the effect of refactoring

prefers a quantitative
the effect of refactoring on the software quality

nderstandability. In the
author found the inconsistent trend.

their measurable effects on

������������������		

������������

��������������������

�

�

software quality attributes. Kolb et al.
software and case study on the implementation and design
quality related measure by conducted a case study in an industrial, agile environment
given various types of refactoring methods. These methods linked with software quality attribute.
3. Refactoring Risk: - Refactoring
as the original designer and they do no
member who is not fully experience
stable system. He may begin forcing the project in the direction unintended by the whole team
team is new and is not given sufficient guidance. It
the team is wrong and the new team member, if put a charge
actually make a serious enhancement
system. Often there are no world-recast improvements
Their purpose is to block new bugs from being
thrown in. Member of new team might come along and distress
certain subsystem program. New bugs are created and users of a
the software, from their outlook is getting defeat
however, have a user base that expects your product to not be fully backed quit yet then it’s a much better
condition to consider major refactoring because the long time
effective and you’re less likely to disrupt a

4. Methods of Refactoring:

In Flower’s catalog various software refactoring methods are defined. Here we use the some of the
methods from this catalog.

1. Pull Up Method
Pull Up refactoring method
a Subclass into a Super class

 public abstract class Vehicle
 {
 // methods
 }
 public class Bus : Vehicle
 {
 public void Turn(Direction direction)
 {
 //write code here
 }
}
 public class Bike : Vehicle
{
}
 public enum Direction
 {
 Right,
 Left,
 }

����������������������������		��

������������������������� ��������� ������

�! �"���������	#���$%& ������	��� ���

Kolb et al. found that refactoring improves maintainability and
and case study on the implementation and design [9]. Moser et al. found that refactoring

conducted a case study in an industrial, agile environment
given various types of refactoring methods. These methods linked with software quality attribute.

efactoring is frequently hard because the refactorer often is no
they do not have the same background. It is true that when a new team

not fully experienced with this system, decides to inject new ideas into an otherwise
may begin forcing the project in the direction unintended by the whole team
not given sufficient guidance. It is just a risk, however, there is also a

team is wrong and the new team member, if put a charge and was allowed to do
ually make a serious enhancement. These problem occur between a team when they w

recast improvements planned, so the team is stable
new bugs from being introduced and fix old ones with a couple extra features

of new team might come along and distress the apple cart by insisting that, he rewrite
. New bugs are created and users of a justly safe product are

outlook is getting defeat. If you have larger functionality changes in the
however, have a user base that expects your product to not be fully backed quit yet then it’s a much better

factoring because the long time benefits of the superior design will
re less likely to disrupt a large user-base.

In Flower’s catalog various software refactoring methods are defined. Here we use the some of the

refactoring method involves moving a member of a class, such as
Super class.

public abstract class Vehicle

: Vehicle

public void Turn(Direction direction)

: Vehicle

��� ��������� ������' ' ' ��()��
���((������

���*�+��,����

found that refactoring improves maintainability and reusability of
found that refactoring increase

conducted a case study in an industrial, agile environment [10]. Flower has
given various types of refactoring methods. These methods linked with software quality attribute.

ecause the refactorer often is not the same person
hat when a new team

to inject new ideas into an otherwise
may begin forcing the project in the direction unintended by the whole team when the

a risk, however, there is also a possibility that
and was allowed to do his thing would

These problem occur between a team when they working on legacy
 with their design.

and fix old ones with a couple extra features
the apple cart by insisting that, he rewrites

product are distract because
If you have larger functionality changes in the software

however, have a user base that expects your product to not be fully backed quit yet then it’s a much better
benefits of the superior design will be

In Flower’s catalog various software refactoring methods are defined. Here we use the some of the

involves moving a member of a class, such as procedure, from

������������������		

������������

��������������������

�

�

 Turn method is currently only available to the Bus
class so we create a base class.
class. After refactoring our code is:

 public abstract class Vehicle
 {
 public void Turn(Direction direction)
 {
 //write code here
 }
 }
 public class Bus : Vehicle
{
 }
public class Bike : Vehicle
 {
}
 public enum Direction
 {
 Right,
 Left,
 }

2. Add Parameter: it is a refactoring operation
method create a new parameter to pass the necessary data.

 Fig. 1 Fig.
 Add a parameter for an object that can pass on this information.

3. Extract Parameter: This refactoring method
When the number of parameter in a method is too large
refactoring is also done by delegate via overloading

4. Replace Inheritance with Delegation
method allows removing a class from inheritance hierarchy.
methods of the parent class are invoked

5. Rename Method: When method
refactoring. It changes the name of the method.

�����������-����.���

�

�������+���������/0�

����������������������������		��

������������������������� ��������� ������

�! �"���������	#���$%& ������	��� ���

rently only available to the Bus class, we also want to use it in the
class so we create a base class. Only place methods that need to be used by more

After refactoring our code is:

public abstract class Vehicle

public void Turn(Direction direction)

: Vehicle

: Vehicle

it is a refactoring operation that needs more information from its caller.
method create a new parameter to pass the necessary data.

Fig. 1 Fig. 2
Add a parameter for an object that can pass on this information.

This refactoring method allows selecting a set of parameter
en the number of parameter in a method is too large then need refactoring

done by delegate via overloading method.
with Delegation: 1� (�����((� �(�(� ���.� ��
�� �2� �� (���
� ���((�(� ���
2���

allows removing a class from inheritance hierarchy. Through the new inner class
methods of the parent class are invoked

method name does not reveal its purpose then we use rename method
the name of the method.

�����������-����.���

�

�������+���������/3���0�

��� ��������� ������' ' ' ��()��
���((������

���*�+��,��	�

want to use it in the other Bike
Only place methods that need to be used by more than one derived

needs more information from its caller. This

allows selecting a set of parameters to a method.
then need refactoring. Process of

���((�(� ���
2�����This
hrough the new inner class selected

then we use rename method

������������������		

������������

��������������������

�

�

 Fig- 3 Fig

If method does not explain
name of function so it reveals its purpose. The
function getFirstname () get reveal it pu
method is used to rename the name of function.

6. Form template method:
extracting different piece into
swap operations of collection
The client code won't have to change
of the algorithm beginning from the Template Method

7. Replace method with method object
allows stopping a method from
within the class, without infect

8. Introduce foreign method:
several places, we can replace these code bit with a method call.
method is discover in a suboptimal place it is better than duplication.

 5. The Quality Model for Object-

To achieve the goal of our research we need a quality model that can be easily used to evaluate system
evolution when refactoring. To find the effect of refactoring activities on software quality, the model
measure the feature of internal and external quality.
relationships between the both internal and external quality features. This model can be used the system
and component levels and it is easy to asse
quality factors from the measurements of the internal design properties. Quality model gives developers
an opportunity to fix problems, eliminate unwanted complexity ea
use the following quality attribute in our study

1. Effectiveness: Software should be effective.
2. Reusability: Software reliability is a broad term and it is easy to get confused about it.
3. Understandability: Software may be understandable
4. Extendibility: It is the capability of software to add extra functionality and it is a subset of

flexibility. It allows required
effects.

5. Functionality: It is observance of software with actual requirement and identification.
may have good functionality

6. Flexibility: It is the capability of software to change, add, and remove functionality with changing
current system..�$4��2��5 � � �.��2��4��(.(�
��(��((�
�

�
�����������-����.����

��

�������+���(��/0��� ��

����������������������������		��

������������������������� ��������� ������

�! �"���������	#���$%& ������	��� ���

3 Fig-4

If method does not explain its purpose then we apply rename method. This method changes
reveals its purpose. The function getnm() not display

() get reveal it purpose enter employee first name. So refactoring rename
method is used to rename the name of function.

: This refactoring method is producing standard
into methods with the same signature. In illustration,

of collection-like objects. In a subclass common block of code can be pulled up.
won't have to change because this method is based on inheritance

from the Template Method will be easily adding a new subclass.

Replace method with method object: This method isolating a long method in its own class
allows stopping a method from swell out in size. This also allows splitting it into sub methods

infect the native class with usefulness methods.
method: This method removes the code delicacy. If our code is repeated in

several places, we can replace these code bit with a method call. Smooth examine
in a suboptimal place it is better than duplication.

-Oriented Design

To achieve the goal of our research we need a quality model that can be easily used to evaluate system
evolution when refactoring. To find the effect of refactoring activities on software quality, the model

the feature of internal and external quality. This model and can be used to define
relationships between the both internal and external quality features. This model can be used the system
and component levels and it is easy to assess, because it provides a quantitative assessment of external
quality factors from the measurements of the internal design properties. Quality model gives developers
an opportunity to fix problems, eliminate unwanted complexity early in the development cyc
use the following quality attribute in our study.

Effectiveness: Software should be effective.
Reusability: Software reliability is a broad term and it is easy to get confused about it.

Software may be understandable
capability of software to add extra functionality and it is a subset of

allows required changing at the proper locations to be made without undesirable side

It is observance of software with actual requirement and identification.
functionality.

It is the capability of software to change, add, and remove functionality with changing
$4��2��5 � � �.��2��4��(.(������.����(���
����3�����3�����3)�(������������
��
���((�(��2�

�������-����.���

�

�����+��(�
(�����/0�

��� ��������� ������' ' ' ��()��
���((������

���*�+��,�	��

This method changes the
display its purpose but

So refactoring rename

 piece of code by
methods with the same signature. In illustration, the compare and

common block of code can be pulled up.
because this method is based on inheritance. Add new kinds

adding a new subclass.

isolating a long method in its own class
in size. This also allows splitting it into sub methods

s the code delicacy. If our code is repeated in
examine that the foreign

To achieve the goal of our research we need a quality model that can be easily used to evaluate system
evolution when refactoring. To find the effect of refactoring activities on software quality, the model

and can be used to define metrics and the
relationships between the both internal and external quality features. This model can be used the system

ss, because it provides a quantitative assessment of external
quality factors from the measurements of the internal design properties. Quality model gives developers

rly in the development cycle [13]. We

Reusability: Software reliability is a broad term and it is easy to get confused about it.

capability of software to add extra functionality and it is a subset of
locations to be made without undesirable side

It is observance of software with actual requirement and identification. Software

It is the capability of software to change, add, and remove functionality with changing
�3)�(������������
��
���((�(��2�

������������������		

������������

��������������������

�

�

Table 1. Quality Index Calculation
Software Quality
Attribute
Effectiveness 0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * Composition + 0.2 *

+ 0.2 * Polymorphism
Reusability –0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 * Design Size

Understandability -0.33* Abstraction +0.33* Encapsulation

0.33* Polymorphism
Extensibility 0.5 * Abstraction

Functionality 0.12* Cohesion + 0.22* Polymorphism + 0.22* Messaging + 0.22* Design Size
+ 0.22* Hierarchies

Flexibility 0.25 * Encapsulation
Polymorphism

Bansiya and Davis conducted an empirical study to determine the weights and the model was validated on
the evolution of two real systems. [13
Refactoring activities change the internal design of a software system; therefore we expect refactoring to
impact external quality factors consequently.

5.1. Software Measures
Now we describe how we evaluate the effect of refactoring activities. Refactoring method changes the
structure of software. To collect the following measures we use a quality assurance tool.
1. Average Number of Ancestors (ANA)

calculated by controlling the average of the depth of the inheritance tree. Depth of the inheritance
tree is the length of the inheritance

2. The Design Size in Classes measures the number of classes in a system. DSC is very simple measure
and on this measure the effect of refactoring is simple to assess. Refactoring affect this measures
such as Replace Method with Method Object. Inline class decreases this measure but Replace
Method with Method Object refactoring increase the number of classes in a design.

3. Direct class coupling (DCC) –
Couplings include classes that are related by attribute declarations and message passing. When the
system is highly coupled then the large value of Direct Class Coupling used. Refactoring high
coupled classes can improve quality. This refactoring decrea

4. Measure of aggregation (MOA) in the system is a count of the number of data declarations that are
user defined classes. Measure of aggregation measures the extent of the part
(composition), realized by using attributes. Objects can encapsulate data attributes as well as other
objects. The refactoring activity, Replace Array with Object, replaces data stored in an array into an
object. This refactoring introduces a part
composition.

5. Measure of functional abstraction (MFA) is the ratio of the number of inherited methods by a class to
the total number of local methods in the class. Utilization of inheritance in a design measures by
MFA. The number of inherited methods increases when inheritance is used effectively. This
refactoring increases the functional abstraction in a design. To increase the reusability via inheri
refactoring can be used. A sign of a functional abstraction
methods[14]. For illustration, the Form Template Method uses inheritance to pull
methods into a superclass.

����������������������������		��

������������������������� ��������� ������

�! �"���������	#���$%& ������	��� ���

Quality Index Calculation
Computation formula Equation

0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * Composition + 0.2 *
+ 0.2 * Polymorphism

0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 * Design Size

0.33* Abstraction +0.33* Encapsulation-0.33* Coupling + 0.33* Cohesion
0.33* Polymorphism -0.33* Complexity -0.33* Design Size
0.5 * Abstraction – 0.5 * Coupling + 0.5 * Inheritance + 0.5 * Polymorphism

0.12* Cohesion + 0.22* Polymorphism + 0.22* Messaging + 0.22* Design Size
+ 0.22* Hierarchies
0.25 * Encapsulation – 0.25 * Coupling + 0.5 * Composition + 0.5 *
Polymorphism

Bansiya and Davis conducted an empirical study to determine the weights and the model was validated on
[13].

the internal design of a software system; therefore we expect refactoring to
impact external quality factors consequently.

Now we describe how we evaluate the effect of refactoring activities. Refactoring method changes the
re of software. To collect the following measures we use a quality assurance tool.

Average Number of Ancestors (ANA)-Abstraction of a system is measure by ANA. ANA is
calculated by controlling the average of the depth of the inheritance tree. Depth of the inheritance
tree is the length of the inheritance series from the root of the inheritance tree to the measured class.
The Design Size in Classes measures the number of classes in a system. DSC is very simple measure
and on this measure the effect of refactoring is simple to assess. Refactoring affect this measures

thod with Method Object. Inline class decreases this measure but Replace
Method with Method Object refactoring increase the number of classes in a design.

–it counts the number of classes that a class is directly connected to.
Couplings include classes that are related by attribute declarations and message passing. When the
system is highly coupled then the large value of Direct Class Coupling used. Refactoring high
coupled classes can improve quality. This refactoring decreases coupling in the system.
Measure of aggregation (MOA) in the system is a count of the number of data declarations that are
user defined classes. Measure of aggregation measures the extent of the part-whole relationships

ing attributes. Objects can encapsulate data attributes as well as other
objects. The refactoring activity, Replace Array with Object, replaces data stored in an array into an
object. This refactoring introduces a part-whole relationship and therefore increases the use of

Measure of functional abstraction (MFA) is the ratio of the number of inherited methods by a class to
the total number of local methods in the class. Utilization of inheritance in a design measures by

nherited methods increases when inheritance is used effectively. This
refactoring increases the functional abstraction in a design. To increase the reusability via inheri

sign of a functional abstraction is expanding the num
For illustration, the Form Template Method uses inheritance to pull

��� ��������� ������' ' ' ��()��
���((������

���*�+��,�	��

0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * Composition + 0.2 * Inheritance

0.25 * Coupling + 0.25 * Cohesion + 0.5 * Messaging + 0.5 * Design Size

0.33* Coupling + 0.33* Cohesion -

0.5 * Coupling + 0.5 * Inheritance + 0.5 * Polymorphism

0.12* Cohesion + 0.22* Polymorphism + 0.22* Messaging + 0.22* Design Size

0.25 * Coupling + 0.5 * Composition + 0.5 *

Bansiya and Davis conducted an empirical study to determine the weights and the model was validated on

the internal design of a software system; therefore we expect refactoring to

Now we describe how we evaluate the effect of refactoring activities. Refactoring method changes the
re of software. To collect the following measures we use a quality assurance tool.

Abstraction of a system is measure by ANA. ANA is
calculated by controlling the average of the depth of the inheritance tree. Depth of the inheritance

ritance tree to the measured class.
The Design Size in Classes measures the number of classes in a system. DSC is very simple measure
and on this measure the effect of refactoring is simple to assess. Refactoring affect this measures

thod with Method Object. Inline class decreases this measure but Replace
Method with Method Object refactoring increase the number of classes in a design.

it counts the number of classes that a class is directly connected to.
Couplings include classes that are related by attribute declarations and message passing. When the
system is highly coupled then the large value of Direct Class Coupling used. Refactoring high

ses coupling in the system.
Measure of aggregation (MOA) in the system is a count of the number of data declarations that are

whole relationships
ing attributes. Objects can encapsulate data attributes as well as other

objects. The refactoring activity, Replace Array with Object, replaces data stored in an array into an
ncreases the use of

Measure of functional abstraction (MFA) is the ratio of the number of inherited methods by a class to
the total number of local methods in the class. Utilization of inheritance in a design measures by

nherited methods increases when inheritance is used effectively. This
refactoring increases the functional abstraction in a design. To increase the reusability via inheritance

e number of inherited
For illustration, the Form Template Method uses inheritance to pull-up the identical

������������������		

������������

��������������������

�

�

6. Class interface size (CIS) is a count of public methods in a class, which is the size of the response set
for the class. A class that has large number of responsibilities has many interactions with other
classes.

6. Analysis of Refactroring

We face with many problems when we refactor any software. Sometimes it decreases the software
quality. With refactoring the processing of software may be slow.
refactorings on measurements of the internal design properties, and
refactoring on the quality factors that are defined by QMOOD.

Now we evaluate the effect of the refactoring mechanics on design properties and assess the changes in
the relevant measures. For represent to increase we use
changes on measures.

 Table 2. Effect of refactoring method on

Refactoring ANA
Pull Up Method 0
Add Parameter -
Extract Parameter 0
Replace Inheritance
with delegation

-

Rename Method 0
From Template
Method

0

Replace Method
with Method Object

0

Introduce Foreign
Method

0

From the results of refactorings analysis, we can notice that some measures are impacted more than
others. To characterize the effect of refactoring on software measures, for each category, we count the
number of times a measure is impacted by the refactorings in that category. If a me
more than 50% of the times then it is considered highly correlated with such a group, otherwise it is
loosely correlated

6.1. Refactoring impact analysis on quality Attribute

Now we evaluate the effect of refactorings
improves or deteriorates quality attribute. Evaluations that are presented in the following table result from
using the impact of refactoring on software measures to calculate the impact
consists of refactoring activities that are considered safe
Extract Parameter and Introduce Foreign Method are unsafe refactoring and rest of all are safe
refactoring. Safe refactorings have improvements more than deteriorations but unsafe have more
deterioration than improvement. In the table we show that Pull Up Method totally deteriorated the
attribute not any improvement but
Method with Method Object improves Effectiveness, Reusability, Understandability, Functionality and
Flexibility. When we use safe refactoring
Method we need more precaution.
decisions when to use refactoring efficiently and to conduct goal
improve the functionality of a system then we consider all refactoring activity
functionality of system and avoid which deteriorate functionality

����������������������������		��

������������������������� ��������� ������

�! �"���������	#���$%& ������	��� ���

Class interface size (CIS) is a count of public methods in a class, which is the size of the response set
for the class. A class that has large number of responsibilities has many interactions with other

many problems when we refactor any software. Sometimes it decreases the software
quality. With refactoring the processing of software may be slow. Now we analyze the effect of software
refactorings on measurements of the internal design properties, and then we assess the effect of
refactoring on the quality factors that are defined by QMOOD.

evaluate the effect of the refactoring mechanics on design properties and assess the changes in
For represent to increase we use +, - to represent a decrease and

. Effect of refactoring method on measure of software quality
ANA DSC DCC MOA MFA CIS

 0 - 0 - -
 0 + - - +
 0 - 0 + 0
 0 + + - +

 0 0 0 0 0
 0 0 0 + +

 + + + 0 0

 0 + 0 0 +

analysis, we can notice that some measures are impacted more than
others. To characterize the effect of refactoring on software measures, for each category, we count the
number of times a measure is impacted by the refactorings in that category. If a me
more than 50% of the times then it is considered highly correlated with such a group, otherwise it is

Refactoring impact analysis on quality Attribute

Now we evaluate the effect of refactorings on quality attribute. Evaluation tells us that refactoring activity
improves or deteriorates quality attribute. Evaluations that are presented in the following table result from
using the impact of refactoring on software measures to calculate the impact on quality attribute.
consists of refactoring activities that are considered safe and unsafe. Pull Up Method, Add Parameter,
Extract Parameter and Introduce Foreign Method are unsafe refactoring and rest of all are safe

ngs have improvements more than deteriorations but unsafe have more
In the table we show that Pull Up Method totally deteriorated the

attribute not any improvement but From Template Method totally improvement the attribute.
Method with Method Object improves Effectiveness, Reusability, Understandability, Functionality and

we use safe refactoring then there is no more precautions need. In the case of Pull Up
Method we need more precaution. Software developers can use these refactoring heuristics to make
decisions when to use refactoring efficiently and to conduct goal-driven refactoring
improve the functionality of a system then we consider all refactoring activity which increase the

nctionality of system and avoid which deteriorate functionality. In summary, our research findings

��� ��������� ������' ' ' ��()��
���((������

���*�+��,�	��

Class interface size (CIS) is a count of public methods in a class, which is the size of the response set
for the class. A class that has large number of responsibilities has many interactions with other

many problems when we refactor any software. Sometimes it decreases the software
Now we analyze the effect of software

then we assess the effect of

evaluate the effect of the refactoring mechanics on design properties and assess the changes in
to represent a decrease and 0 to show no

CIS
-
+
0
+

0
+

0

+

analysis, we can notice that some measures are impacted more than
others. To characterize the effect of refactoring on software measures, for each category, we count the
number of times a measure is impacted by the refactorings in that category. If a measure is impacted
more than 50% of the times then it is considered highly correlated with such a group, otherwise it is

refactoring activity
improves or deteriorates quality attribute. Evaluations that are presented in the following table result from

on quality attribute. Table 3.
Pull Up Method, Add Parameter,

Extract Parameter and Introduce Foreign Method are unsafe refactoring and rest of all are safe
ngs have improvements more than deteriorations but unsafe have more

In the table we show that Pull Up Method totally deteriorated the
From Template Method totally improvement the attribute. Replace

Method with Method Object improves Effectiveness, Reusability, Understandability, Functionality and
n the case of Pull Up

velopers can use these refactoring heuristics to make
refactoring. If we want to

which increase the
In summary, our research findings

������������������		

������������

��������������������

�

�

revealed more useful information on refactoring
results in Table 3 show the effect of safe and unsafe

Table 3. Effects of safe and unsafe
Refactoring E

ffectiveness

Pull Up Method -
Add Parameter -
Extract Parameter -
Rename Method +
Replace
inheritance with
Delegation

-

From Template
Method

+

Replace Method
With Method
Object

+

Introduce Foreign
Method

-

We show in the Table 4 summary of the relationships b
and show refactoring heuristics that deteriorate, keep unchan
shows that refactoring activity has
flexibility improved 53.5%, Understandability improved 47%, extendibility and effectiveness improved
42%and Functionality improved 40% of the
these refactoring does not always deteriorate quality

 Table 4: Conclusion Effect of Refactoring on Software Quality

Quality attribute Deteriorated
Reusability 16%
Flexibility 21%
Understandability 19%
Extendibility 30%
Effectiveness 9%
Functionality 25%

7. Conclusion
Refactoring is highly sensible to assure the quality of the software process and product
development. Refactorings is used to improve the software quality attribute.
software risks and effects of refactoring on
when we refactor any software. But if we use safe refactoring then we save the quality of software. We
analyses the effect of many refactoring activities on six software quality attribute.
define of eight methods of refactoring and

����������������������������		��

������������������������� ��������� ������

�! �"���������	#���$%& ������	��� ���

revealed more useful information on refactoring effect on software quality attribute
results in Table 3 show the effect of safe and unsafe refactoring on software quality attribute.

. Effects of safe and unsafe refactoring on software quality attribute

R
eusability

U
nderstandability

E
xtensibility

Functionality

Flexibility

D
eteriorated

- - - - - 6
- + - + - 4
- - - + + 4
- + - - + 3
+ - - - - 5

+ + + + + 0

+ + - + + 1

+ - - - - 5

summary of the relationships between refactorings and the six quality attribute
refactoring heuristics that deteriorate, keep unchanged, and improve quality attribute

has more positive impact on reusability. We show in the table that
flexibility improved 53.5%, Understandability improved 47%, extendibility and effectiveness improved
42%and Functionality improved 40% of the refactoring. Effectiveness deteriorated only 9%. A
these refactoring does not always deteriorate quality sometime be may improve the quality.

Effect of Refactoring on Software Quality
Deteriorated Unchanged Improved
16% 19% 65%
21% 25.5% 53.5%
19% 28% 47%
30% 28% 42%

 49% 42%
25% 35% 40%

to assure the quality of the software process and product
Refactorings is used to improve the software quality attribute. In this study we analyses the
and effects of refactoring on attribute of software quality attribute. There are many risks

when we refactor any software. But if we use safe refactoring then we save the quality of software. We
analyses the effect of many refactoring activities on six software quality attribute. In

ight methods of refactoring and six software measure notice that they effect

��� ��������� ������' ' ' ��()��
���((������

���*�+��,�	6�

effect on software quality attribute. In addition, the
refactoring on software quality attribute.

software quality attribute

Im
provem

ents

0
2
2
3
1

6

5

1

etween refactorings and the six quality attribute
ged, and improve quality attribute. The table

. We show in the table that
flexibility improved 53.5%, Understandability improved 47%, extendibility and effectiveness improved

refactoring. Effectiveness deteriorated only 9%. Applying
sometime be may improve the quality.

to assure the quality of the software process and product in software
In this study we analyses the

There are many risks
when we refactor any software. But if we use safe refactoring then we save the quality of software. We

 this paper we also
notice that they effect on different

������������������		

������������

��������������������

�

�

software quality attributes. We found that some refactorings are safe and some refactorings are unsafe.
Safe refactoring improves the attribute and uns
deteriorate the attribute. This paper concludes
developer needs to look for the particular refactoring method for desirable attribute.
Software Refactoring is an important area of
maintenance. Refactoring allows developers to
well structured and well designed code after proper applica

References

[1] W. F. Opdyke, “Refactoring: A Program Restructuring Aid in Designing Object
Frameworks”, Ph. D. Thesis, Univ. of Illinois at Urbana

[2] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison

[3]. J. Rech, Context-sensitive Diagnosis of Quality Defects in Object
Thesis. Hildesheim: University of Hildesheim, Department IV, 2009

[4] W.C Wake, (2003), “Refactoring Workbook”, Addison Wesley.

[5] J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation of refactorings and software defect
prediction. In MSR ’08: Proceedings of the 2008 international working conference on Mining software
repositories, pages 35–38, New York, NY, USA, 2008. ACM.

[6] P. Weißgerber and S. Diehl. Are refactorings less error
Proceedings of the international workshop on Mining software repositories, pages 112

 [7] P. Weißgerber and S. Diehl. Identifying refactorings from source
Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering, pages
231–240, Washington, DC, USA, 2006. IEEE Computer Society.

[8] K. Elish, M. Alshayeb and O. Karim, “A Classification of Refactoring Methods Based on Software
Quality Attributes”, Arab J Sci Eng., vol. 36, (2010) May, pp. 1253

[9] P. Meananeatra, “Identifying Refactoring Sequences for Improving Software Maintainab
978-1-4503, (2012) September.

[10] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi. Does refactoring improve reusability? In ICSR,
pages 287–297, 2006.

[11] AspectJ homepage: http://www.aspectj.org

[12] Subramanian, Nary, and Lawrence Chun
Quality Management(SQM 2001).

[13] J. Bansiya, C. Davis, �A Hierarchical Model for Object
IEEE Transactions on Software Engineering, 28 (1), (2002) pp. 4

[14]. T. Mayer, T. Hall, �A Critical Analysis of Current OO Design Metrics�, Software Quality Journal,
8 (2), (1999) pp 97–110.

[15] S. Chidamber, C. Kemerer, �A Metrics Suite for Object Oriented Design�, IEEE Transactions on
Software Engineering, 20(6), (1994) pp. 476

����������������������������		��

������������������������� ��������� ������

�! �"���������	#���$%& ������	��� ���

We found that some refactorings are safe and some refactorings are unsafe.
Safe refactoring improves the attribute and unsafe refactorings are not improving the attribute they only

This paper concludes that refactoring improves the quality of software but
to look for the particular refactoring method for desirable attribute.

Refactoring is an important area of research that promises substantial ben
allows developers to redress code without starting again. We can ret

well designed code after proper application of refactoring techniques.

[1] W. F. Opdyke, “Refactoring: A Program Restructuring Aid in Designing Object-Oriented Application
Frameworks”, Ph. D. Thesis, Univ. of Illinois at Urbana-Champaign, (1992).

Improving the Design of Existing Code. Addison-Wesley Professional, 2000

sensitive Diagnosis of Quality Defects in Object-Oriented Software Systems, Ph. D.
Thesis. Hildesheim: University of Hildesheim, Department IV, 2009

Wake, (2003), “Refactoring Workbook”, Addison Wesley.

[5] J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation of refactorings and software defect
prediction. In MSR ’08: Proceedings of the 2008 international working conference on Mining software

38, New York, NY, USA, 2008. ACM.

[6] P. Weißgerber and S. Diehl. Are refactorings less error-prone than other changes? In MSR ’06:
Proceedings of the international workshop on Mining software repositories, pages 112–

P. Weißgerber and S. Diehl. Identifying refactorings from source-code changes. In ASE ’06:
Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering, pages

240, Washington, DC, USA, 2006. IEEE Computer Society.

Elish, M. Alshayeb and O. Karim, “A Classification of Refactoring Methods Based on Software
Quality Attributes”, Arab J Sci Eng., vol. 36, (2010) May, pp. 1253-1267.

[9] P. Meananeatra, “Identifying Refactoring Sequences for Improving Software Maintainab

[10] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi. Does refactoring improve reusability? In ICSR,

http://www.aspectj.org

[12] Subramanian, Nary, and Lawrence Chung,(2001) “Metrics for software adptability”, Proc. Software

[13] J. Bansiya, C. Davis, �A Hierarchical Model for Object-Oriented Design Quality Assessment
IEEE Transactions on Software Engineering, 28 (1), (2002) pp. 4–17

T. Mayer, T. Hall, �A Critical Analysis of Current OO Design Metrics�, Software Quality Journal,

S. Chidamber, C. Kemerer, �A Metrics Suite for Object Oriented Design�, IEEE Transactions on
94) pp. 476–493

��� ��������� ������' ' ' ��()��
���((������

���*�+��,�	��

We found that some refactorings are safe and some refactorings are unsafe.
afe refactorings are not improving the attribute they only

quality of software but

substantial benefits to software
. We can return with a

tion of refactoring techniques.

Oriented Application

Wesley Professional, 2000

Oriented Software Systems, Ph. D.

[5] J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation of refactorings and software defect
prediction. In MSR ’08: Proceedings of the 2008 international working conference on Mining software

prone than other changes? In MSR ’06:
118. ACM, 2006.

code changes. In ASE ’06:
Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engineering, pages

Elish, M. Alshayeb and O. Karim, “A Classification of Refactoring Methods Based on Software

[9] P. Meananeatra, “Identifying Refactoring Sequences for Improving Software Maintainability”, ACM

[10] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi. Does refactoring improve reusability? In ICSR,

for software adptability”, Proc. Software

Oriented Design Quality Assessment�,

T. Mayer, T. Hall, �A Critical Analysis of Current OO Design Metrics�, Software Quality Journal,

S. Chidamber, C. Kemerer, �A Metrics Suite for Object Oriented Design�, IEEE Transactions on

